Indian Statistical Institute Semestral Examination Differential Topology-BMath III

Max Marks: 60

Time: 3 hours

Throughout, X, Y, Z will denote manifolds without boundary unless otherwise stated. All maps are assumed to be smooth.

- (1) (a) Let $p(z) = z^m + a_1 z^{m-1} + \dots + a_m$ be a non-constant polynomial with complex coefficients, and consider the associated map $z \mapsto p(z)$ of the complex plane $\mathbb{C} \longrightarrow \mathbb{C}$. Is it always true that p is a submersion except at finitely many points. Justify. [4]
 - (b) Show that $SL_n(\mathbb{R})$, the set of $n \times n$ matrices with determinant equal to 1, is a manifold. Determine its dimension. Describe the tangent space $T_A(SL_n(\mathbb{R}))$ at a matrix $A \in SL_n(\mathbb{R})$. [6]
 - (c) Define the notion of a manifold with boundary. Show that $X = [0, 1] \times [0, 1]$ is not a manifold with boundary. [5]
- (2) (a) Let $f: X \longrightarrow Y$ be a map and Z a submanifold of Y. If $f \pitchfork Z$, show that $f^{-1}(Z)$ is a submanifold of X with $\operatorname{codim}(f^{-1}(Z)) = \operatorname{codim}(Z)$. [8]
 - (b) State the Stability theorem. Explain all the terms in the theorem. Let $\rho : \mathbb{R} \longrightarrow \mathbb{R}$ be a map with $\rho(s) = 1$ if |s| < 1, $\rho(s) = 0$ if |s| > 2. Define $f_t : \mathbb{R} \longrightarrow \mathbb{R}$ by $f_t(x) = x\rho(tx)$. Verify that the Stability theorem is false for noncompact domains by checking that the function ρ is a counterexample to all parts of the Stability theorem. [12]
- (3) (a) Let f : X → Y be a map and Z a submanifold of Y. Define the mod 2 intersection number I₂(f, Z). Show that homotopic maps have the same mod 2 intersection number.
 [5]
 - (b) Suppose $f : X \longrightarrow Y$ is a diffeomorphism with X compact. Let Y_i , i = 1, 2 be submanifolds of Y such that $I_2(Y_1, Y_2)$ is defined. Let $X_i = f^{-1}(Y_i)$, i = 1, 2. Show that $I_2(X_1, X_2)$ is also defined and $I_2(X_1, X_2) = I_2(Y_1, Y_2)$. [10]
 - (c) State the Borsuk-Ulam theorem. Let $f_1, \ldots, f_k : S^k \longrightarrow \mathbb{R}$ be antipode preserving maps. Show that there exists $x \in S^k$ such that $f_i(x) = 0$ for all $i = 1, 2, \ldots, k$. [5]